Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Circ Res ; 132(9): e116-e133, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-36927079

RESUMO

BACKGROUND: Small-conductance Ca2+-activated K+ (SK)-channel inhibitors have antiarrhythmic effects in animal models of atrial fibrillation (AF), presenting a potential novel antiarrhythmic option. However, the regulation of SK-channels in human atrial cardiomyocytes and its modification in patients with AF are poorly understood and were the object of this study. METHODS: Apamin-sensitive SK-channel current (ISK) and action potentials were recorded in human right-atrial cardiomyocytes from sinus rhythm control (Ctl) patients or patients with (long-standing persistent) chronic AF (cAF). RESULTS: ISK was significantly higher, and apamin caused larger action potential prolongation in cAF- versus Ctl-cardiomyocytes. Sensitivity analyses in an in silico human atrial cardiomyocyte model identified IK1 and ISK as major regulators of repolarization. Increased ISK in cAF was not associated with increases in mRNA/protein levels of SK-channel subunits in either right- or left-atrial tissue homogenates or right-atrial cardiomyocytes, but the abundance of SK2 at the sarcolemma was larger in cAF versus Ctl in both tissue-slices and cardiomyocytes. Latrunculin-A and primaquine (anterograde and retrograde protein-trafficking inhibitors) eliminated the differences in SK2 membrane levels and ISK between Ctl- and cAF-cardiomyocytes. In addition, the phosphatase-inhibitor okadaic acid reduced ISK amplitude and abolished the difference between Ctl- and cAF-cardiomyocytes, indicating that reduced calmodulin-Thr80 phosphorylation due to increased protein phosphatase-2A levels in the SK-channel complex likely contribute to the greater ISK in cAF-cardiomyocytes. Finally, rapid electrical activation (5 Hz, 10 minutes) of Ctl-cardiomyocytes promoted SK2 membrane-localization, increased ISK and reduced action potential duration, effects greatly attenuated by apamin. Latrunculin-A or primaquine prevented the 5-Hz-induced ISK-upregulation. CONCLUSIONS: ISK is upregulated in patients with cAF due to enhanced channel function, mediated by phosphatase-2A-dependent calmodulin-Thr80 dephosphorylation and tachycardia-dependent enhanced trafficking and targeting of SK-channel subunits to the sarcolemma. The observed AF-associated increases in ISK, which promote reentry-stabilizing action potential duration shortening, suggest an important role for SK-channels in AF auto-promotion and provide a rationale for pursuing the antiarrhythmic effects of SK-channel inhibition in humans.


Assuntos
Fibrilação Atrial , Animais , Humanos , Fibrilação Atrial/metabolismo , Apamina/metabolismo , Apamina/farmacologia , Primaquina/metabolismo , Primaquina/farmacologia , Calmodulina/metabolismo , Átrios do Coração/metabolismo , Miócitos Cardíacos/metabolismo , Antiarrítmicos/uso terapêutico , Potenciais de Ação/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo
2.
Eur Heart J ; 44(27): 2483-2494, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-36810794

RESUMO

AIMS: Atrial fibrillation (AF) is associated with altered cAMP/PKA signaling and an AF-promoting reduction of L-type Ca2+-current (ICa,L), the mechanisms of which are poorly understood. Cyclic-nucleotide phosphodiesterases (PDEs) degrade cAMP and regulate PKA-dependent phosphorylation of key calcium-handling proteins, including the ICa,L-carrying Cav1.2α1C subunit. The aim was to assess whether altered function of PDE type-8 (PDE8) isoforms contributes to the reduction of ICa,L in persistent (chronic) AF (cAF) patients. METHODS AND RESULTS: mRNA, protein levels, and localization of PDE8A and PDE8B isoforms were measured by RT-qPCR, western blot, co-immunoprecipitation and immunofluorescence. PDE8 function was assessed by FRET, patch-clamp and sharp-electrode recordings. PDE8A gene and protein levels were higher in paroxysmal AF (pAF) vs. sinus rhythm (SR) patients, whereas PDE8B was upregulated in cAF only. Cytosolic abundance of PDE8A was higher in atrial pAF myocytes, whereas PDE8B tended to be more abundant at the plasmalemma in cAF myocytes. In co-immunoprecipitation, only PDE8B2 showed binding to Cav1.2α1C subunit which was strongly increased in cAF. Accordingly, Cav1.2α1C showed a lower phosphorylation at Ser1928 in association with decreased ICa,L in cAF. Selective PDE8 inhibition increased Ser1928 phosphorylation of Cav1.2α1C, enhanced cAMP at the subsarcolemma and rescued the lower ICa,L in cAF, which was accompanied by a prolongation of action potential duration at 50% of repolarization. CONCLUSION: Both PDE8A and PDE8B are expressed in human heart. Upregulation of PDE8B isoforms in cAF reduces ICa,L via direct interaction of PDE8B2 with the Cav1.2α1C subunit. Thus, upregulated PDE8B2 might serve as a novel molecular mechanism of the proarrhythmic reduction of ICa,L in cAF.


Assuntos
Fibrilação Atrial , Humanos , Cálcio/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Miócitos Cardíacos/fisiologia , Fosforilação
3.
Methods Mol Biol ; 2483: 195-204, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35286677

RESUMO

The ubiquitous second messengers' 3',5'-cyclic adenosine monophosphate (cAMP ) and 3',5'-cyclic guanosine monophosphate (cGMP) are crucial in regulating cardiomyocyte function, as well as pathological processes, by acting in distinct subcellular microdomains and thus controlling excitation-contraction coupling. Spatio-temporal intracellular dynamics of cyclic nucleotides can be measured in living cells using fluorescence resonance energy transfer (FRET ) by transducing isolated cells with genetically encoded biosensors. While FRET experiments have been regularly performed in cardiomyocytes from different animal models, human-based translational experiments are very challenging due to the difficulty to culture and transduce adult human cardiomyocytes. Here, we describe a technique for obtaining human atrial and ventricular myocytes which allows to keep them alive in culture long enough to transduce them and visualize cAMP and cGMP in physiological and pathological human settings.


Assuntos
Miócitos Cardíacos , Nucleotídeos Cíclicos , Animais , AMP Cíclico , GMP Cíclico , Transferência Ressonante de Energia de Fluorescência/métodos , Humanos
4.
Circ Res ; 130(7): 994-1010, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35193397

RESUMO

RATIONALE: Atrial fibrillation (AF) and heart failure often coexist, but their interaction is poorly understood. Clinical data indicate that the arrhythmic component of AF may contribute to left ventricular (LV) dysfunction. OBJECTIVE: This study investigates the effects and molecular mechanisms of AF on the human LV. METHODS AND RESULTS: Ventricular myocardium from patients with aortic stenosis and preserved LV function with sinus rhythm or rate-controlled AF was studied. LV myocardium from patients with sinus rhythm and patients with AF showed no differences in fibrosis. In functional studies, systolic Ca2+ transient amplitude of LV cardiomyocytes was reduced in patients with AF, while diastolic Ca2+ levels and Ca2+ transient kinetics were not statistically different. These results were confirmed in LV cardiomyocytes from nonfailing donors with sinus rhythm or AF. Moreover, normofrequent AF was simulated in vitro using arrhythmic or rhythmic pacing (both at 60 bpm). After 24 hours of AF-simulation, human LV cardiomyocytes from nonfailing donors showed an impaired Ca2+ transient amplitude. For a standardized investigation of AF-simulation, human iPSC-cardiomyocytes were tested. Seven days of AF-simulation caused reduced systolic Ca2+ transient amplitude and sarcoplasmic reticulum Ca2+ load likely because of an increased diastolic sarcoplasmic reticulum Ca2+ leak. Moreover, cytosolic Na+ concentration was elevated and action potential duration was prolonged after AF-simulation. We detected an increased late Na+ current as a potential trigger for the detrimentally altered Ca2+/Na+-interplay. Mechanistically, reactive oxygen species were higher in the LV of patients with AF. CaMKII (Ca2+/calmodulin-dependent protein kinase IIδc) was found to be more oxidized at Met281/282 in the LV of patients with AF leading to an increased CaMKII activity and consequent increased RyR2 phosphorylation. CaMKII inhibition and ROS scavenging ameliorated impaired systolic Ca2+ handling after AF-simulation. CONCLUSIONS: AF causes distinct functional and molecular remodeling of the human LV. This translational study provides the first mechanistic characterization and the potential negative impact of AF in the absence of tachycardia on the human ventricle.


Assuntos
Fibrilação Atrial , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Humanos , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
5.
Cells ; 10(11)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34831263

RESUMO

Both, the decreased L-type Ca2+ current (ICa,L) density and increased spontaneous Ca2+ release from the sarcoplasmic reticulum (SR), have been associated with atrial fibrillation (AF). In this study, we tested the hypothesis that remodeling of 3',5'-cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) signaling is linked to these compartment-specific changes (up- or down-regulation) in Ca2+-handling. Perforated patch-clamp experiments were performed in atrial myocytes from 53 patients with AF and 104 patients in sinus rhythm (Ctl). A significantly higher frequency of transient inward currents (ITI) activated by spontaneous Ca2+ release was confirmed in myocytes from AF patients. Next, inhibition of PKA by H-89 promoted a stronger effect on the ITI frequency in these myocytes compared to myocytes from Ctl patients (7.6-fold vs. 2.5-fold reduction), while the ß-agonist isoproterenol (ISO) caused a greater increase in Ctl patients (5.5-fold vs. 2.1-fold). ICa,L density was larger in myocytes from Ctl patients at baseline (p < 0.05). However, the effect of ISO on ICa,L density was only slightly stronger in AF than in Ctl myocytes (3.6-fold vs. 2.7-fold). Interestingly, a significant reduction of ICa,L and Ca2+ sparks was observed upon Ca2+/Calmodulin-dependent protein kinase II inhibition by KN-93, but this inhibition had no effect on ITI. Fluorescence resonance energy transfer (FRET) experiments showed that although AF promoted cytosolic desensitization to ß-adrenergic stimulation, ISO increased cAMP to similar levels in both groups of patients in the L-type Ca2+ channel and ryanodine receptor compartments. Basal cAMP signaling also showed compartment-specific regulation by phosphodiesterases in atrial myocytes from 44 Ctl and 43 AF patients. Our results suggest that AF is associated with opposite changes in compartmentalized PKA/cAMP-dependent regulation of ICa,L (down-regulation) and ITI (up-regulation).


Assuntos
Fibrilação Atrial/metabolismo , Sinalização do Cálcio , AMP Cíclico/metabolismo , Antagonistas Adrenérgicos beta/farmacologia , Idoso , Animais , Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Carvedilol/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Citosol/efeitos dos fármacos , Citosol/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Receptores Adrenérgicos beta/metabolismo , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo
6.
Redox Biol ; 48: 102179, 2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34763298

RESUMO

3',5'-cyclic guanosine monophosphate (cGMP) is a druggable second messenger regulating cell growth and survival in a plethora of cells and disease states, many of which are associated with hypoxia. For example, in myocardial infarction and heart failure (HF), clinical use of cGMP-elevating drugs improves disease outcomes. Although they protect mice from ischemia/reperfusion (I/R) injury, the exact mechanism how cardiac cGMP signaling is regulated in response to hypoxia is still largely unknown. By monitoring real-time cGMP dynamics in murine and human cardiomyocytes using in vitro and in vivo models of hypoxia/reoxygenation (H/R) and I/R injury combined with biochemical methods, we show that hypoxia causes rapid but partial degradation of cGMP-hydrolyzing phosphodiesterase-3A (PDE3A) protein via the autophagosomal-lysosomal pathway. While increasing cGMP in hypoxia prevents cell death, partially reduced PDE3A does not change the pro-apoptotic second messenger 3',5'-cyclic adenosine monophosphate (cAMP). However, it leads to significantly enhanced protective effects of clinically relevant activators of nitric oxide-sensitive guanylyl cyclase (NO-GC). Collectively, our mouse and human data unravel a new mechanism by which cardiac cGMP improves hypoxia-associated disease conditions.

7.
Europace ; 23(11): 1795-1814, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34313298

RESUMO

Cardiac arrhythmias are a major cause of death and disability. A large number of experimental cell and animal models have been developed to study arrhythmogenic diseases. These models have provided important insights into the underlying arrhythmia mechanisms and translational options for their therapeutic management. This position paper from the ESC Working Group on Cardiac Cellular Electrophysiology provides an overview of (i) currently available in vitro, ex vivo, and in vivo electrophysiological research methodologies, (ii) the most commonly used experimental (cellular and animal) models for cardiac arrhythmias including relevant species differences, (iii) the use of human cardiac tissue, induced pluripotent stem cell (hiPSC)-derived and in silico models to study cardiac arrhythmias, and (iv) the availability, relevance, limitations, and opportunities of these cellular and animal models to recapitulate specific acquired and inherited arrhythmogenic diseases, including atrial fibrillation, heart failure, cardiomyopathy, myocarditis, sinus node, and conduction disorders and channelopathies. By promoting a better understanding of these models and their limitations, this position paper aims to improve the quality of basic research in cardiac electrophysiology, with the ultimate goal to facilitate the clinical translation and application of basic electrophysiological research findings on arrhythmia mechanisms and therapies.


Assuntos
Fibrilação Atrial , Técnicas Eletrofisiológicas Cardíacas , Animais , Eletrofisiologia Cardíaca , Fenômenos Eletrofisiológicos , Humanos , Modelos Teóricos
9.
Cell Signal ; 82: 109970, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33677066

RESUMO

BACKGROUND: There is ongoing interest in generating cardiomyocytes derived from human induced pluripotent stem cells (hiPSC) to study human cardiac physiology and pathophysiology. Recently we found that norepinephrine-stimulated calcium currents (ICa) in hiPSC-cardiomyocytes were smaller in conventional monolayers (ML) than in engineered heart tissue (EHT). In order to elucidate culture specific regulation of ß1-adrenoceptor (ß1-AR) responses we investigated whether action of phosphodiesterases (PDEs) may limit norepinephrine effects on ICa and on cytosolic cAMP in hiPSC-cardiomyocytes. Results were compared to adult human atrial cardiomyocytes. METHODS: Adult human atrial cardiomyocytes were isolated from tissue samples obtained during open heart surgery. All patients were in sinus rhythm. HiPSC-cardiomyocytes were dissociated from ML and EHT. Förster-resonance energy transfer (FRET) was used to monitor cytosolic cAMP (Epac1-camps sensor, transfected by adenovirus). ICa was recorded by whole-cell patch clamp technique. Cilostamide (300 nM) and rolipram (10 µM) were used to inhibit PDE3 and PDE4, respectively. ß1-AR were stimulated with the physiological agonist norepinephrine (100 µM). RESULTS: In adult human atrial cardiomyocytes, norepinephrine increased cytosolic cAMP FRET ratio by +13.7 ± 1.5% (n = 10/9, mean ± SEM, number of cells/number patients) and ICa by +10.4 ± 1.5 pA/pF (n = 15/10). This effect was not further increased in the concomitant presence of rolipram, cilostamide and norepinephrine, indicating saturation by norepinephrine alone. In ML hiPSC-cardiomyocytes, norepinephrine exerted smaller increases in cytosolic cAMP and ICa (FRET +9.6 ± 0.5% n = 52/21, number of cells/number of ML or EHT, and ICa + 1.4 ± 0.2 pA/pF n = 34/7, p < 0.05 each) and both were augmented in the presence of the PDE4 inhibitor rolipram (FRET +16.7 ± 0.8% n = 94/26 and ICa + 5.6 ± 1.4 pA/pF n = 11/5, p < 0.05 each). Cilostamide increased the response to norepinephrine on FRET (+12.7 ± 0.5% n = 91/19, p < 0.05), but not on ICa. In EHT hiPSC-cardiomyocytes, norepinephrine responses on both, FRET and ICa, were larger than in ML (FRET +12.1 ± 0.3% n = 87/32 and ICa + 3.3 ± 0.2 pA/pF n = 13/5, p < 0.05 each). Rolipram augmented the norepinephrine effect on ICa (+6.2 ± 1.6 pA/pF; p < 0.05 vs. norepinephrine alone, n = 10/4), but not on FRET. CONCLUSION: Our results show culture-dependent differences in hiPSC-cardiomyocytes. In conventional ML but not in EHT, maximum norepinephrine effects on cytosolic cAMP depend on PDE3 and PDE4, suggesting immaturity when compared to the situation in adult human atrial cardiomyocytes. The smaller ICa responses to norepinephrine in ML and EHT vs. adult human atrial cardiomyocytes depend at least partially on a non-physiological large impact of PDE4 in hiPSC-cardiomyocytes.


Assuntos
AMP Cíclico/metabolismo , Átrios do Coração , Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Adulto , Células Cultivadas , Meios de Cultura , Átrios do Coração/citologia , Átrios do Coração/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Cultura Primária de Células
10.
J Mol Cell Cardiol ; 155: 10-20, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33631188

RESUMO

AIM: To obtain a quantitative expression profile of the main genes involved in the cAMP-signaling cascade in human control atria and in different cardiac pathologies. METHODS AND RESULTS: Expression of 48 target genes playing a relevant role in the cAMP-signaling cascade was assessed by RT-qPCR. 113 samples were obtained from right atrial appendages (RAA) of patients in sinus rhythm (SR) with or without atrium dilation, paroxysmal atrial fibrillation (AF), persistent AF or heart failure (HF); and left atrial appendages (LAA) from patients in SR or with AF. Our results show that right and left atrial appendages in donor hearts or from SR patients have similar expression values except for AC7 and PDE2A. Despite the enormous chamber-dependent variability in the gene-expression changes between pathologies, several distinguishable patterns could be identified. PDE8A, PI3Kγ and EPAC2 were upregulated in AF. Different phosphodiesterase (PDE) families showed specific pathology-dependent changes. CONCLUSION: By comparing mRNA-expression patterns of the cAMP-signaling cascade related genes in right and left atrial appendages of human hearts and across different pathologies, we show that 1) gene expression is not significantly affected by cardioplegic solution content, 2) it is appropriate to use SR atrial samples as controls, and 3) many genes in the cAMP-signaling cascade are affected in AF and HF but only few of them appear to be chamber (right or left) specific. TOPIC: Genetic changes in human diseased atria. TRANSLATIONAL PERSPECTIVE: The cyclic AMP signaling pathway is important for atrial function. However, expression patterns of the genes involved in the atria of healthy and diseased hearts are still unclear. We give here a general overview of how different pathologies affect the expression of key genes in the cAMP signaling pathway in human right and left atria appendages. Our study may help identifying new genes of interest as potential therapeutic targets or clinical biomarkers for these pathologies and could serve as a guide in future gene therapy studies.


Assuntos
AMP Cíclico/metabolismo , Variação Genética , Átrios do Coração/metabolismo , Sistemas do Segundo Mensageiro/genética , Idoso , Alelos , Apêndice Atrial/metabolismo , Fibrilação Atrial/complicações , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/genética , Fibrilação Atrial/fisiopatologia , Biomarcadores , Suscetibilidade a Doenças , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/etiologia , Humanos , Masculino , Pessoa de Meia-Idade , Proteoma , Proteômica/métodos
11.
Naunyn Schmiedebergs Arch Pharmacol ; 394(2): 291-298, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32949251

RESUMO

Atrial fibrillation (AF)-associated remodeling includes contractile dysfunction whose reasons are only partially resolved. Serotonin (5-HT) increases contractile force and causes arrhythmias in atrial trabeculae from patients in sinus rhythm (SR). In persistent atrial fibrillation (peAF), the force responses to 5-HT are blunted and arrhythmic effects are abolished. Since force but not arrhythmic responses to 5-HT in peAF could be restored by PDE3 + PDE4 inhibition, we sought to perform real-time measurements of cAMP to understand whether peAF alters PDE3 + PDE4-mediated compartmentation of 5-HT4 receptor-cAMP responses. Isolated human atrial myocytes from patients in SR, with paroxysmal AF (paAF) or peAF, were adenovirally transduced to express the FRET-based cAMP sensor Epac1-camps. Forty-eight hours later, cAMP responses to 5-HT (100 µM) were measured in the absence or concomitant presence of the PDE3 inhibitor cilostamide (0.3 µM) and the PDE4 inhibitor rolipram (1 µM). We successfully established real-time cAMP imaging in AF myocytes. 5-HT increased cAMP in SR, paAF, and peAF, but in line with previous findings on contractility, this increase was considerably smaller in peAF than in SR or paAF. The maximal cAMP response to forskolin (10 µM) was preserved in all groups. The diminished cAMP response to 5-HT in peAF was recovered by preincubation with cilostamide + rolipram. We uncovered a significantly diminished cAMP response to 5-HT4 receptor stimulation which may explain the blunted 5-HT inotropic responses observed in peAF. Since both cAMP and force responses but not arrhythmic responses were recovered after concomitant inhibition of PDE3 + PDE4, they might be regulated in different subcellular microdomains.


Assuntos
Fibrilação Atrial/metabolismo , AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Miócitos Cardíacos/metabolismo , Receptores 5-HT4 de Serotonina/metabolismo , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
12.
Circ Res ; 127(8): 1036-1055, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32762493

RESUMO

RATIONALE: Postoperative atrial fibrillation (POAF) is a common and troublesome complication of cardiac surgery. POAF is generally believed to occur when postoperative triggers act on a preexisting vulnerable substrate, but the underlying cellular and molecular mechanisms are largely unknown. OBJECTIVE: To identify cellular POAF mechanisms in right atrial samples from patients without a history of atrial fibrillation undergoing open-heart surgery. METHODS AND RESULTS: Multicellular action potentials, membrane ion-currents (perforated patch-clamp), or simultaneous membrane-current (ruptured patch-clamp) and [Ca2+]i-recordings in atrial cardiomyocytes, along with protein-expression levels in tissue homogenates or cardiomyocytes, were assessed in 265 atrial samples from patients without or with POAF. No indices of electrical, profibrotic, or connexin remodeling were noted in POAF, but Ca2+-transient amplitude was smaller, although spontaneous sarcoplasmic reticulum (SR) Ca2+-release events and L-type Ca2+-current alternans occurred more frequently. CaMKII (Ca2+/calmodulin-dependent protein kinase-II) protein-expression, CaMKII-dependent phosphorylation of the cardiac RyR2 (ryanodine-receptor channel type-2), and RyR2 single-channel open-probability were significantly increased in POAF. SR Ca2+-content was unchanged in POAF despite greater SR Ca2+-leak, with a trend towards increased SR Ca2+-ATPase activity. Patients with POAF also showed stronger expression of activated components of the NLRP3 (NACHT, LRR, and PYD domains-containing protein-3)-inflammasome system in atrial whole-tissue homogenates and cardiomyocytes. Acute application of interleukin-1ß caused NLRP3-signaling activation and CaMKII-dependent RyR2/phospholamban hyperphosphorylation in an immortalized mouse atrial cardiomyocyte cell-line (HL-1-cardiomyocytes) and enhanced spontaneous SR Ca2+-release events in both POAF cardiomyocytes and HL-1-cardiomyocytes. Computational modeling showed that RyR2 dysfunction and increased SR Ca2+-uptake are sufficient to reproduce the Ca2+-handling phenotype and indicated an increased risk of proarrhythmic delayed afterdepolarizations in POAF subjects in response to interleukin-1ß. CONCLUSIONS: Preexisting Ca2+-handling abnormalities and activation of NLRP3-inflammasome/CaMKII signaling are evident in atrial cardiomyocytes from patients who subsequently develop POAF. These molecular substrates sensitize cardiomyocytes to spontaneous Ca2+-releases and arrhythmogenic afterdepolarizations, particularly upon exposure to inflammatory mediators. Our data reveal a potential cellular and molecular substrate for this important clinical problem.


Assuntos
Fibrilação Atrial/etiologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Átrios do Coração/enzimologia , Frequência Cardíaca , Inflamassomos/metabolismo , Miócitos Cardíacos/enzimologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Potenciais de Ação , Idoso , Animais , Fibrilação Atrial/enzimologia , Fibrilação Atrial/fisiopatologia , Sinalização do Cálcio , Estudos de Casos e Controles , Linhagem Celular , Feminino , Átrios do Coração/fisiopatologia , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Fosforilação , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
13.
Biochem Soc Trans ; 47(5): 1327-1339, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31652306

RESUMO

3',5'-Cyclic guanosine monophosphate (cGMP) is one of the major second messengers critically involved in the regulation of cardiac electrophysiology, hypertrophy, and contractility. Recent molecular and cellular studies have significantly advanced our understanding of the cGMP signalling cascade, its local microdomain-specific regulation and its role in protecting the heart from pathological stress. Here, we summarise recent findings on cardiac cGMP microdomain regulation and discuss their potential clinical significance.


Assuntos
GMP Cíclico/metabolismo , Miócitos Cardíacos/metabolismo , Transdução de Sinais , Animais , Humanos , Sistemas do Segundo Mensageiro
14.
ESC Heart Fail ; 6(1): 154-163, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30378291

RESUMO

AIMS: In hypertrophy and heart failure, the proarrhythmic persistent Na+ current (INaL ) is enhanced. We aimed to investigate the electrophysiological role of neuronal sodium channel NaV 1.8 in human hypertrophied myocardium. METHODS AND RESULTS: Myocardial tissue of 24 patients suffering from symptomatic severe aortic stenosis and concomitant significant afterload-induced hypertrophy with preserved ejection fraction was used and compared with 12 healthy controls. We performed quantitative real-time PCR and western blot and detected a significant up-regulation of NaV 1.8 mRNA (2.34-fold) and protein expression (1.96-fold) in human hypertrophied myocardium compared with healthy hearts. Interestingly, NaV 1.5 protein expression was significantly reduced in parallel (0.60-fold). Using whole-cell patch-clamp technique, we found that the prominent INaL was significantly reduced after addition of novel NaV 1.8-specific blockers either A-803467 (30 nM) or PF-01247324 (1 µM) in human hypertrophic cardiomyocytes. This clearly demonstrates the relevant contribution of NaV 1.8 to this proarrhythmic current. We observed a significant action potential duration shortening and performed confocal microscopy, demonstrating a 50% decrease in proarrhythmic diastolic sarcoplasmic reticulum (SR)-Ca2+ leak and SR-Ca2+ spark frequency after exposure to both NaV 1.8 inhibitors. CONCLUSIONS: We show for the first time that the neuronal sodium channel NaV 1.8 is up-regulated on mRNA and protein level in the human hypertrophied myocardium. Furthermore, inhibition of NaV 1.8 reduced augmented INaL , abbreviated the action potential duration, and decreased the SR-Ca2+ leak. The findings of our study suggest that NaV 1.8 could be a promising antiarrhythmic therapeutic target and merits further investigation.


Assuntos
Regulação da Expressão Gênica , Ventrículos do Coração/metabolismo , Hipertrofia Ventricular Esquerda/genética , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.8/genética , RNA/genética , Potenciais de Ação , Idoso , Western Blotting , Diástole , Feminino , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Humanos , Hipertrofia Ventricular Esquerda/diagnóstico , Hipertrofia Ventricular Esquerda/metabolismo , Masculino , Miócitos Cardíacos/patologia , Canal de Sódio Disparado por Voltagem NAV1.8/biossíntese , Técnicas de Patch-Clamp , Reação em Cadeia da Polimerase em Tempo Real , Retículo Sarcoplasmático/metabolismo
15.
Front Physiol ; 9: 1383, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30356673

RESUMO

Atrial fibrillation (AF) and heart failure (HF) are common cardiovascular diseases that often co-exist. Animal models have suggested complex AF-promoting atrial structural, electrical, and Ca2+-handling remodeling in the setting of HF, but data in human samples are scarce, particularly regarding Ca2+-handling remodeling. Here, we evaluated atrial remodeling in patients with severe left ventricular (LV) dysfunction (HFrEF), long-standing persistent ('chronic') AF (cAF) or both (HFrEF-cAF), and sinus rhythm controls with normal LV function (Ctl) using western blot in right-atrial tissue, sharp-electrode action potential (AP) measurements in atrial trabeculae and voltage-clamp experiments in isolated right-atrial cardiomyocytes. Compared to Ctl, expression of profibrotic markers (collagen-1a, fibronectin, periostin) was higher in HFrEF and HFrEF-cAF patients, indicative of structural remodeling. Connexin-43 expression was reduced in HFrEF patients, but not HFrEF-cAF patients. AP characteristics were unchanged in HFrEF, but showed classical indices of electrical remodeling in cAF and HFrEF-cAF (prolonged AP duration at 20% and shorter AP duration at 50% and 90% repolarization). L-type Ca2+ current (ICa,L) was significantly reduced in HFrEF, cAF and HFrEF-cAF, without changes in voltage-dependence. Potentially proarrhythmic spontaneous transient-inward currents were significantly more frequent in HFrEF and HFrEF-cAF compared to Ctl, likely resulting from increased sarcoplasmic reticulum (SR) Ca2+ load (integrated caffeine-induced current) in HFrEF and increased ryanodine-receptor (RyR2) single-channel open probability in HFrEF and HFrEF-cAF. Although expression and phosphorylation of the SR Ca2+-ATPase type-2a (SERCA2a) regulator phospholamban were unchanged in HFrEF and HFrEF-cAF patients, protein levels of SERCA2a were increased in HFrEF-cAF and sarcolipin expression was decreased in both HFrEF and HFrEF-cAF, likely increasing SR Ca2+ uptake and load. RyR2 protein levels were decreased in HFrEF and HFrEF-cAF patients, but junctin levels were higher in HFrEF and relative Ser2814-RyR2 phosphorylation levels were increased in HFrEF-cAF, both potentially contributing to the greater RyR2 open probability. These novel insights into the molecular substrate for atrial arrhythmias in HF-patients position Ca2+-handling abnormalities as a likely trigger of AF in HF patients, which subsequently produces electrical remodeling that promotes the maintenance of the arrhythmia. Our new findings may have important implications for the development of novel treatment options for AF in the context of HF.

16.
Cardiovasc Res ; 114(2): 247-258, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29036603

RESUMO

Aims: Quantitative real-time RT-PCR (RT-qPCR) has become the method of choice for mRNA quantification, but requires an accurate normalization based on the use of reference genes showing invariant expression across various pathological conditions. Only few data exist on appropriate reference genes for the human heart. The objective of this study was to determine a set of suitable reference genes in human atrial and ventricular tissues, from right and left cavities in control and in cardiac diseases. Methods and results: We assessed the expression of 16 reference genes (ACTB, B2M, GAPDH, GUSB, HMBS, HPRT1, IPO8, PGK1, POLR2A, PPIA, RPLP0, TBP, TFRC, UBC, YWHAZ, 18S) in tissues from: right and left ventricles from healthy controls and heart failure (HF) patients; right-atrial tissue from patients in sinus rhythm with (SRd) or without (SRnd) atrial dilatation, patients with paroxysmal (pAF) or chronic (cAF) atrial fibrillation or with HF; and left-atrial tissue from patients in SR or cAF. Consensual analysis (by geNorm and Normfinder algorithms, BestKeeper software tool and comparative delta-Ct method) of the variability scores obtained for each reference gene expression shows that the most stably expressed genes are: GAPDH, GUSB, IPO8, POLR2A, and YWHAZ when comparing either right and left ventricle or ventricle from healthy controls and HF patients; GAPDH, IPO8, POLR2A, PPIA, and RPLP0 when comparing either right and left atrium or right atria from all pathological groups. ACTB, TBP, TFRC, and 18S genes were identified as the least stable. Conclusions: The overall most stable reference genes across different heart cavities and disease conditions were GAPDH, IPO8, POLR2A and PPIA. YWHAZ or GUSB could be added to this set for some specific experiments. This study should provide useful guidelines for reference gene selection in RT-qPCR studies in human heart.


Assuntos
Fibrilação Atrial/genética , Perfilação da Expressão Gênica/métodos , Genes Essenciais , Átrios do Coração/química , Cardiopatias/genética , Ventrículos do Coração/química , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma , Proteínas 14-3-3/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , RNA Polimerases Dirigidas por DNA/genética , Europa (Continente) , Feminino , Perfilação da Expressão Gênica/normas , Marcadores Genéticos , Glucuronidase/genética , Gliceraldeído-3-Fosfato Desidrogenases/genética , Humanos , Masculino , Pessoa de Meia-Idade , Peptidilprolil Isomerase/genética , Reação em Cadeia da Polimerase em Tempo Real/normas , Padrões de Referência , Reprodutibilidade dos Testes , beta Carioferinas/genética
18.
Arrhythm Electrophysiol Rev ; 5(1): 14-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27403288

RESUMO

A wide range of ion channels, transporters, signaling pathways and tissue structure at a microscopic and macroscopic scale regulate the electrophysiological activity of the heart. Each region of the heart has optimised these properties based on its specific role during the cardiac cycle, leading to well-established differences in electrophysiology, Ca(2+) handling and tissue structure between atria and ventricles and between different layers of the ventricular wall. Similarly, the right ventricle (RV) and left ventricle (LV) have different embryological, structural, metabolic and electrophysiological features, but whether interventricular differences promote differential remodeling leading to arrhythmias is not well understood. In this article, we will summarise the available data on intrinsic differences between LV and RV electrophysiology and indicate how these differences affect cardiac function. Furthermore, we will discuss the differential remodeling of both chambers in pathological conditions and its potential impact on arrhythmogenesis.

19.
Basic Res Cardiol ; 111(1): 5, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26611209

RESUMO

Atrial fibrillation (AF) has been associated with increased spontaneous calcium release from the sarcoplasmic reticulum and linked to increased adenosine A2A receptor (A2AR) expression and activation. Here we tested whether this may favor atrial arrhythmogenesis by promoting beat-to-beat alternation and irregularity. Patch-clamp and confocal calcium imaging was used to measure the beat-to-beat response of the calcium current and transient in human atrial myocytes. Responses were classified as uniform, alternating or irregular and stimulation of Gs-protein coupled receptors decreased the frequency where a uniform response could be maintained from 1.0 ± 0.1 to 0.6 ± 0.1 Hz; p < 0.01 for beta-adrenergic receptors and from 1.4 ± 0.1 to 0.5 ± 0.1 Hz; p < 0.05 for A2ARs. The latter was linked to increased spontaneous calcium release and after-depolarizations. Moreover, A2AR activation increased the fraction of non-uniformly responding cells in HL-1 myocyte cultures from 19 ± 3 to 51 ± 9 %; p < 0.02, and electrical mapping in perfused porcine atria revealed that adenosine induced electrical alternans at longer cycle lengths, doubled the fraction of electrodes showing alternation, and increased the amplitude of alternations. Importantly, protein kinase A inhibition increased the highest frequency where uniform responses could be maintained from 0.84 ± 0.12 to 1.86 ± 0.11 Hz; p < 0.001 and prevention of A2AR-activation with exogenous adenosine deaminase selectively increased the threshold from 0.8 ± 0.1 to 1.2 ± 0.1 Hz; p = 0.001 in myocytes from patients with AF. In conclusion, A2AR-activation promotes beat-to-beat irregularities in the calcium transient in human atrial myocytes, and prevention of A2AR activation may be a novel means to maintain uniform beat-to-beat responses at higher beating frequencies in patients with atrial fibrillation.


Assuntos
Fibrilação Atrial/metabolismo , Átrios do Coração/metabolismo , Miócitos Cardíacos/metabolismo , Receptor A2A de Adenosina/metabolismo , Animais , Células Cultivadas , Humanos , Microscopia Confocal , Técnicas de Patch-Clamp , Sus scrofa
20.
Basic Res Cardiol ; 110(5): 505, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26162324

RESUMO

Voltage-gated Kv1.1 channels encoded by the Kcna1 gene are traditionally regarded as being neural-specific with no known expression or intrinsic functional role in the heart. However, recent studies in mice reveal low-level Kv1.1 expression in heart and cardiac abnormalities associated with Kv1.1-deficiency suggesting that the channel may have a previously unrecognized cardiac role. Therefore, this study tests the hypothesis that Kv1.1 channels are associated with arrhythmogenesis and contribute to intrinsic cardiac function. In intra-atrial burst pacing experiments, Kcna1-null mice exhibited increased susceptibility to atrial fibrillation (AF). The atria of Kcna1-null mice showed minimal Kv1 family ion channel remodeling and fibrosis as measured by qRT-PCR and Masson's trichrome histology, respectively. Using RT-PCR, immunocytochemistry, and immunoblotting, KCNA1 mRNA and protein were detected in isolated mouse cardiomyocytes and human atria for the first time. Patients with chronic AF (cAF) showed no changes in KCNA1 mRNA levels relative to controls; however, they exhibited increases in atrial Kv1.1 protein levels, not seen in paroxysmal AF patients. Patch-clamp recordings of isolated human atrial myocytes revealed significant dendrotoxin-K (DTX-K)-sensitive outward current components that were significantly increased in cAF patients, reflecting a contribution by Kv1.1 channels. The concomitant increases in Kv1.1 protein and DTX-K-sensitive currents in atria of cAF patients suggest that the channel contributes to the pathological mechanisms of persistent AF. These findings provide evidence of an intrinsic cardiac role of Kv1.1 channels and indicate that they may contribute to atrial repolarization and AF susceptibility.


Assuntos
Fibrilação Atrial/metabolismo , Átrios do Coração/metabolismo , Canal de Potássio Kv1.1/metabolismo , Idoso , Animais , Feminino , Humanos , Immunoblotting , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Miócitos Cardíacos/metabolismo , Técnicas de Patch-Clamp , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...